2021-2022

Mr. Baker

Materials

• Paper
• Pencil
• Math folder (Either a 3 ring binder or a pocket folder)

Rules:

Be Respectful

Be Prepared

Raise hand when needing to talk and wait to be called on

Be Positive

Course Outline:

Domains and Standards

Expressions and Equations:  This unit focuses on the Expressions and Equations (EE) domain.  The following grade 6 standards will be addressed

Apply and extend previous understandings of arithmetic to algebraic expressions.

• Write and evaluate numerical expressions involving whole-number exponents. (6.EE.1)
• Write, read and evaluate expressions in which letters stand for numbers. (6.EE.2)
• Write expressions that record operations with numbers and with letters standing for numbers.
• Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity.
• Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).
• Apply the properties of operations to generate equivalent expressions. (6.EE.3)
• Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). (6.EE.4)

Reason about and solve one-variable equations and inequalities.

• Understand solving an equation or inequality as a process of answering a question:  which values from a specified set, if any, make the equation or inequality true?  Use substitution to determine whether a given number in a specified set makes an equation or inequality true. (6.EE.5)
• Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (6.EE.6)
• Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q and x are all nonnegative rational numbers. (6.EE.7)
• Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.  (6.EE.8)
• Use variables to represent two quantities in a real-world problem that change in relationship to one another;  write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable.  Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.  (6.EE.9)

The Number System:  This unit focuses on the Number System (NS) domain. The following grade 6 standards will be addressed:

Apply and extend previous understandings of numbers to the system of rational numbers.

• 6.EE.7  Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q and x are all nonnegative rational numbers.

• 6.EE.1  Write and evaluate numerical expressions involving whole-number exponents.
• 6.EE.2   Write, read and evaluate expressions in which letters stand for numbers.
• b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms.
• c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas V = s3 and A = 6 s2 to find the volume and surface area of a cube with sides of length s = 1/2.
• 6.EE.3  Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.
• 6.EE.4  Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.

Integers and Rational Numbers:  This unit focuses on the integers and Rational Numbers domain.  The following 6th grade standards will be addressed:

• 6.NS.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above /below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.
• 6.NS.6 Understand a rational number as a point on the number line.  Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
• a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., -(-3) = 3 and that 0 is its own opposite.
• c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.
• 6.NS.7   Understand ordering and absolute value of rational numbers.
• a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram.  For example, interpret -3>-7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
• b. Write, interpret, and explain statements of order for rational numbers in real-world contexts.  For example, write -3°C > -7°C to express the fact that -3°C is warmer than -7°C.
• c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation.  For example, for an account balance of -30 dollars, write |-30| = 30 to describe the size of the debt in dollars.
• 6.EE.5  Understand solving an equation or inequality as a process of answering a question:  which values from a specified set, if any, make the equation or inequality true?  Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
• 6.EE.6  Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.
• 6.EE.8  Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

The Coordinate Plane (functions):  This unit focuses on the Coordinate Plane domain.  The following 6th grade standards will be addressed:

• 6.EE.9  Use variables to represent two quantities in a real-world problem that change in relationship to one another;  write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable.  Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.  For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.

Data and Graphs:  This unit focuses on the data and graphs domain.  The following 6th grade standards will be addressed:

• 6.SP.1   Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a statistical question because one anticipates variability in students’ ages
• 6.SP.2   Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
• 6.SP.3   Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
• 6.SP.4  Display numerical data in plots on a number line, including dot plots, histograms, and box plots
• 6.SP.5ab Summarize numerical data sets in relation to their context, such as by:
• a. Reporting the number of observations.
• b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
• 6.SP.5cd Summarize numerical data sets in relation to their context, such as by:
• c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and /or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
• d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

Geometry:  This unit focuses on the Geometry (G) domain.  The following grade 6 standards will be addressed:

Solve real-world and mathematical problems involving area, surface area, and volume.

• Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems. (6.G.1)
• Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism.  Apply the formulas V=lwh and V= Bh to find the volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems. (6.G.2)
• Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems. (6.G.3)
• Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.  Apply these techniques in the context of solving real-world and mathematical problems. (6.G.4)

Agenda Books

Agenda books are expected to be filled out on a daily basis. All assignments will be recorded by students for parents to refer to daily as weekly lesson plans (which are posted on my webpage prior to the beginning of the week) are subject to change in order to better meet the needs of students. It is especially important that the agenda books are utilized properly in order to communicate between school and home. Doing so will encourage the development of organizational skills as well as student ownership in learning.

• A         100 - 90%
• B         89 – 80%
• C         79 – 70%
• D         69 – 60%
• F          59 – 50%

Students will be given daily grades on bell work.  There will be a grade on each and every homework assignment.   In order to receive full credit for your homework, all work must be shown on your paper and mistakes must be corrected as we go over it in class.  Homework is very important.  It helps to reinforce what you have learned in class on a daily basis by giving you time to practice, form ideas, and make connections.  (It is also a safe place to make mistakes.)  Effort to complete homework is always accounted for, so don’t be afraid to try something even if you think you don’t understand.  You will never be penalized for trying and failing on a homework assignment; instead, you will learn from your mistakes.

Homework and class assignments accounts for 40% of your grade/average while quizzes, projects, and tests will account for 60% of your nine weeks grade.

I do expect work to be completed on time.  It is safe to assume that any assignment I give will be graded.  I do give a lot of grades each nine weeks but missing homework assignments will result in a failing grade.  If you have a legitimate reason for not turning in your homework I will accept a makeup work assignment on special instances. I will accept all homework up to the end of the week for full credit after that you will only be able to attain partial credit for the assignment.

Make-up Work – When you are absent, it is your responsibility to find out what you missed and submit your work in a timely manner.  You may ask a classmate from the same class period or your teacher.

I __________________________ have read and fully understand the above document.  I agree to participate in discussions in Mr. Baker’s math class and put forth at least 100% effort.  I also agree to turn in my homework when it is assigned.  When test are given I agree that I will study at least 20 minutes the night before the test.  I also agree that I will be respectful in Mr. Baker’s math class, I will respect others, I will not make fun or mock others when they give an answer, I will raise my hand when I need to ask a question and I will wait my turn to answer.  I will come to class each and every day with a positive attitude and be prepared to work.  By signing below I agree to all these terms and conditions.

Signature:

____________________________________________________