Open vision bar
Guide

Meece Middle School

Curriculum Guide

2021 - 2022

6th Grade Math Baker 

Time Frame

Unit Title

Topics

Standards

 

45 days

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 days

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 days

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 days

 

 

 

 

 

 

 

 

 

 

 

30 days

Expressions and Equations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number Theory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integers and Rational Numbers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Coordinate Plane (functions)

 

 

 

 

 

 

 

 

 

 

Data and Graphs

  • Patterns and Expressions
  • Variables and Expressions
  • Modeling Expressions
  • Writing Algebraic Expressions
  • Solve One-Step Equations
  • Model Equations
  • Solve Addition Equations
  • Solve Subtraction Equations
  • Model Division Equations
  • Solve Multiplication and Division Equations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • Exponents
  • Prime Numbers and Prime Factorization
  • The Distributive Property
  • Simplifying Algebraic Expressions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • Exploring Integers
  • Compare and Order Integers
  • Rational Numbers
  • Compare and Order Rational Numbers
  • Inequalities
  • Solve One-Step Inequalities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • Functions
  • Graphing Functions
  • Functions in the Real World

 

 

 

 

 

 

 

 

 

  • Mean
  • Median and Mode
  • Frequency Tables
  • Dot Plots
  • Box and Whisker Plots
  • Histograms
  • Variability of Data
  • Shape of Distributions
  • Statistical Questions

6.EE.2   Write, read and evaluate expressions in which letters stand for numbers.

a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation “Subtract y from 5” as 5 – y.

b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms.

c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas V = s3 and A = 6 s2 to find the volume and surface area of a cube with sides of length s = 1/2.

6.EE.5  Understand solving an equation or inequality as a process of answering a question:  which values from a specified set, if any, make the equation or inequality true?  Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

6.EE.6  Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

6.EE.7  Solve real-world and mathematical problems by writing and solving equations of the form x + p = q and px = q for cases in which p, q and x are all nonnegative rational numbers.

 

6.EE.1  Write and evaluate numerical expressions involving whole-number exponents.

6.EE.2   Write, read and evaluate expressions in which letters stand for numbers.

b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression 2 (8 + 7) as a product of two factors; view (8 + 7) as both a single entity and a sum of two terms.

c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas V = s3 and A = 6 s2 to find the volume and surface area of a cube with sides of length s = 1/2.

6.EE.3  Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3 (2 + x) to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6 (4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.  

6.EE.4  Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions y + y + y and 3y are equivalent because they name the same number regardless of which number y stands for.

 

 

 

 

 

 

6.NS.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above /below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

6.NS.6 Understand a rational number as a point on the number line.  Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.

a.  Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., -(-3) = 3 and that 0 is its own opposite.

c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.

6.NS.7   Understand ordering and absolute value of rational numbers.

a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram.  For example, interpret -3>-7 as a statement that -3 is located to the right of -7 on a number line oriented from left to right.

b. Write, interpret, and explain statements of order for rational numbers in real-world contexts.  For example, write -3°C > -7°C to express the fact that -3°C is warmer than -7°C.

c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation.  For example, for an account balance of -30 dollars, write |-30| = 30 to describe the size of the debt in dollars.

6.EE.5  Understand solving an equation or inequality as a process of answering a question:  which values from a specified set, if any, make the equation or inequality true?  Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

6.EE.6  Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

6.EE.8  Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

 

 

 

 

 

 

6.EE.9  Use variables to represent two quantities in a real-world problem that change in relationship to one another;  write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable.  Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.  For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation d = 65t to represent the relationship between distance and time.

 

 

 

6.SP.1   Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, “How old am I?” is not a statistical question, but “How old are the students in my school?” is a statistical question because one anticipates variability in students’ ages

6.SP.2   Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

6.SP.3   Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

6.SP.4  Display numerical data in plots on a number line, including dot plots, histograms, and box plots

6.SP.5ab Summarize numerical data sets in relation to their context, such as by:

a. Reporting the number of observations.

b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.

6.SP.5cd Summarize numerical data sets in relation to their context, such as by:

c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and /or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.

d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

 

 

 

 

20 days

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometry and Measurement

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • Areas of Parallelograms
  • Areas of Triangles
  • Areas of Polygons
  • Three-Dimensional Figures
  • Spatial Reasoning
  • Surface Area of Prisms
  • Surface Area of Pyramids
  • Volumes of Rectangular Prisms

6.G.1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.

6.G.2  Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism.  Apply the formulas V=lwh and V= Bh to find the volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

6.G.4 Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.  Apply these techniques in the context of solving real-world and mathematical problems.

 

 

30 days

Review and Testing

  • Discovery Education
  • K-PREP
  • Placement Testing